ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

VAGUE **ĝ** OPEN SETS & ITS APPLICATIONS IN VAGUE TOPOLOGICAL SPACES

MARY TENCY E.L¹, Dr. PAULINE MARY HELEN²

¹RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS, NIRMALA COLLEGE FOR WOMEN, COIMBATORE – 18

²ASSOCIATE PROFESSOR, DEPARTMENT OF MATHEMATICS, NIRMALA COLLEGE FOR WOMEN, COIMBATORE – 18

ABSTRACT

A new class of vague \hat{g} - open sets in vague topological spaces is introduced and also studied some of its basic properties. Further we obtained $T_V \hat{g}_{\frac{1}{2}}^*$, $T_V \hat{g}_{\frac{1}{2}}^*$, $T_{vs} \hat{g}_{g}$ spaces and also discussed some of its characterizations.

KEYWORDS

Vague \hat{g} open sets, $T_V \hat{g}_{\frac{1}{2}}$ space, $T_V \hat{g}_{\frac{1}{2}}$ space, $T_{vs} \hat{g}_{g}$ space.

1. INTRODUCTION

In 1965 the fuzzy sets was introduced by Zadeh^[14]. The theory of fuzzy topology was introduced in 1967 by C.L. Chang^[4]. The concept of vague sets was first initiated by Gau and Buehrer^[5]. Norman Levine^[6] initiated generalized closed (briefly g-closed) sets in 1970. M.K Veera Kumar ^[13] introduced \hat{g} –Closed sets in topological spaces in 2000.

Here we introduced the concepts of vague \hat{g} - open sets also studied the applications of the new class and its basic properties.

2. PRELIMINARIES

Definition 2.1: [2] A vague set \mathcal{A} in the universe of discourse X is characterized by two membership functions given by:

1. A true membership function $T_{\mathcal{A}}$: $X \rightarrow [0,1]$ and

2. A false membership function $F_{\mathcal{A}}$: $X \rightarrow [0,1]$,

where $T_{\mathcal{A}}(x)$ is lower bound on the grade of membership of x derived from the "evidence for x", $F_{\mathcal{A}}(x)$ is a lower bound on the negation of x derived from the "evidence against x" and $T_{\mathcal{A}}(x) + F_{\mathcal{A}}(x) \le 1$. Thus the grade of membership of x in the vague set \mathcal{A} is bounded by a subinterval $[T_{\mathcal{A}}(x), 1 - F_{\mathcal{A}}(x)]$ of [0, 1].

Definition 2.2: [2] Let \mathcal{A} ad \mathcal{B} be two vague sets of the form $\mathcal{A} = \{\langle x, [T_{\mathcal{A}}(x), 1 - F_{\mathcal{A}}(x)] \rangle | x \in X\}$ and $\mathcal{B} = \{\langle x, [T_{\mathcal{B}}(x), 1 - F_{\mathcal{B}}(x)] \rangle | x \in X\}$ Then

a) $\mathcal{A} \subseteq \mathcal{B}$ if and only if $\mathcal{A}(x) \leq T_{\mathcal{B}}(x)$ and $1 - F_{\mathcal{A}}(x) \leq 1 - F_{\mathcal{B}}(x)$ for all $x \in X$

- b) $\mathcal{A} = \mathcal{B}$ if and only if $\mathcal{A} \subseteq \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{A}$
- c) $\mathcal{A}^{\mathsf{C}} = \{ \langle \mathbf{x}, \mathbf{F}_{\mathcal{A}}(\mathbf{x}), 1 \mathbf{T}_{\mathcal{A}}(\mathbf{x}) / \mathbf{x} \in \mathbf{X} \rangle \}$
- d) $\mathcal{A} \cap \mathcal{B} = \{ \langle \mathbf{x}, \min(T_{\mathcal{A}}(\mathbf{x}), T_{\mathcal{B}}(\mathbf{x})), \min(1 F_{\mathcal{A}}(\mathbf{x}), 1 F_{\mathcal{B}}(\mathbf{x})) \rangle / \mathbf{x} \in \mathbf{X} \}$
- e) $\mathcal{A} \cup \mathcal{B} = \{ \langle \mathbf{x}, \max(\mathsf{T}_{\mathcal{A}}(\mathbf{x}), \mathsf{T}_{\mathcal{B}}(\mathbf{x})), \max(1 \mathsf{F}_{\mathcal{A}}(\mathbf{x}), 1 \mathcal{B}(\mathbf{x})) \rangle / \mathbf{x} \in \mathsf{X} \}$

VAGUE TOPOLOGICAL SPACE

Definition 2.3:[8] A vague topology (VT in short) on X is a family τ of vague sets (VS in short) in X satisfying the following axioms.

- a) $0,1 \in \tau$
- b) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$
- c) $\cup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$

In this case the pair (X, τ) is called a vague topological space (VTS in short) and any VS in ' τ ' is known as a vague open set (VOS in short) in X.

Definition 2.4:[8] Let (X, τ) be a VTS and $\mathcal{A} = \langle x, T_{\mathcal{A}}, 1 - F_{\mathcal{A}} \rangle$ be a VS in X. Then the vague interior and a vague closure are defined by

V int $(\mathcal{A}) = \bigcup \{G/G \text{ is an VOS in X and } G \subseteq \mathcal{A} \}, V cl (\mathcal{A}) = \bigcap \{K/K \text{ is an VCS in X and } \mathcal{A} \subseteq K \}$ Note: $Vcl(\mathcal{A}^c) = (V \text{ int } (\mathcal{A}))^c$ and $V \text{ int}(\mathcal{A}^c) = (V cl (\mathcal{A}))^c$.

Definition 2.5:[8] A Vague set $\mathcal{A} \text{ of } (X, \tau)$ is said to be a (VSCS if $Vint(Vcl(\mathcal{A})) \subseteq \mathcal{A}$), (VSOS if $\mathcal{A} \subseteq Vcl(Vint(\mathcal{A}))$), (VPCS if $Vcl(Vint(\mathcal{A})) \subseteq \mathcal{A}$), (VPOS if $\mathcal{A} \subseteq Vint(Vcl(\mathcal{A}))$), (VaCS if $Vcl(Vint(Vcl(\mathcal{A}))) \subseteq \mathcal{A}$), (VaOS if $\mathcal{A} \subseteq Vint(Vcl(\mathcal{A}))$), (VROS if $\mathcal{A} = Vint(Vcl(\mathcal{A}))$), (VRCS if $\mathcal{A} = Vcl(Vint(\mathcal{A}))$),

Definition 2.6:[9] A vague set \mathcal{A} of (X, τ) is said to be a vague \hat{g} -closed sets (VGCS in short) if $Vcl(\mathcal{A}) \subseteq U$ whenever $\mathcal{A} \subseteq U$ and U is vague semi open set in X.

4. VAGUE ĝ - OPEN SETS

We introduced the notion of vague \hat{g} open sets and studied some of their properties.

Definition 3.1: A vague set \mathcal{A} of (X, τ) is said to be a vague \hat{g} - open sets $(V\widehat{G}OS \text{ in short})$ if $Vint(\mathcal{A}) \supseteq U$ whenever $\mathcal{A} \supseteq U$ and U is vague semi closed set in X.

The family of all V \hat{g} OSs of an VTS (X, τ) is denoted by V \hat{g} O(X).

Note that the complement of \mathcal{A} (i.e., \mathcal{A}^{C}) is V \hat{g} CS, \mathcal{A} in an VTS (X, τ) is a V \hat{g} OS in X.

Example 3.2: Let X = {a, b}, τ = {0, G, 1} be a VT on X, G = {< x, [0.2,0.5], [0.1,0.4] >}, then the vague set \mathcal{A} = {< x, [0.2,0.7], [0.3,0.6] >} is a V \hat{g} OS.

Theorem 3.3:

- i. Every VOS is a VĜOS.
- ii. Every VĜOS is a VSGOS.
- iii. Every VĜOS is a VGOS.
- iv. Every VĜOS is a VRGOS.

v. Every VĜOS is a VGPROS.

vi. Every VĜOS is a V α GOS.

Proof: Straight forward.

The converse of the above statements need not be true, which can be verified by the following examples.

Example 3.4: Let $X = \{a, b\}, \tau = \{0, G, 1\}$ be a VT on X, $G = \{< x, [0.1, 0.4], [0.2, 0.3] >\}$, then the vague set $\mathcal{A} = \{< x, [0.2, 0.8], [0.3, 0.6] >\}$ is a V \hat{g} OS but not a VOS.

Example 3.5: Let $X = \{a, b\}, \tau = \{0, G, 1\}$ be a VT on X, $G = \{< x, [0.6, 0.9], [0.7, 0.8] >\}$ then the vague set $\mathcal{A} = \{< x, [0.9, 0.9], [0.8, 0.8] >\}$ is a VSGOS but not VĝOS.

Example 3.6: Let $X = \{a, b\}, \tau = \{0, G_1, G_2, G_3, G_41\}$ be a VT on X, $G_1 = \{< x, [0.2, 0.5], [0.5, 0.5] >\}, G_2 = \{< x, [0.5, 0.9], [0.3, 0.4] >\}, G_3 = \{< x, [0.5, 0.9], [0.4, 0.5] >\}, G_4 = \{< x, [0.2, 0.5], [0.3, 0.4] >\}$ then the vague set $\mathcal{A} = \{< x, [0.4, 0.5], [0.5, 0.6] >\}$ is a VGOS but not VĝOS.

Example 3.7: Let $X = \{a, b\}, \tau = \{0, G, 1\}$ be a VT on X, $G = \{< x, [0.2, 0.7], [0.5, 0.8] >\}$ then the vague set $\mathcal{A} = \{< x, [0.6, 0.8], [0.6, 0.9] >\}$ is a VRGOS but not VĝOS.

Example 3.8: Let $X = \{a, b\}, \tau = \{0, G, 1\}$ be a VT on X, $G = \{< x, [0.5, 0.7], [0.2, 0.7] >\}$ then the vague set $\mathcal{A} = \{< x, [0.4, 0.5], [0.5, 0.8] >\}$ is a VGPROS but not V \hat{g} OS.

Example 3.9: Let $X = \{a, b\}, \tau = \{0, G, 1\}$ is a VT on X, $G = \{< x, [0.5, 0.9], [0.4, 0.8] >\}$ then the vague set $\mathcal{A} = \{< x, [0.2, 0.5], [0.3, 0.6] >\}$ is a V α GOS but not V \hat{g} OS.

Theorem 3.10: The union and the intersection of any two V $\hat{g}OS$ in (X, τ) may be a V $\hat{g}OS$ in (X, τ). This can be seen from the below example.

Example 3.11: Let $X = \{a, b\}, \tau = \{0, G_1, G_2, G_3, G_41\}$ be a VT on X, $G_1 = \{< x, [0.1, 0.4], [0.2, 0.3] >\}, G_2 = \{< x, [0.2, 0.5], [0.1, 0.4] >\}, G_3 = \{< x, [0.2, 0.5], [0.2, 0.4] >\}, G_4 = \{< x, [0.1, 0.4], [0.1, 0.3] >\}$ then the vague set $\mathcal{A} \cup \mathcal{B} = \{< x, [0.2, 0.8], [0.3, 0.6] >\} \& \mathcal{A} \cap \mathcal{B} = \{< x, [0.2, 0.7], [0.3, 0.6] >\}$

is a VĝOS, but depending upon the vague points it may vary.

Theorem 3.12: A vague set \mathcal{A} of a VTS (X, τ) is a $V\hat{G}OS$ in (X, τ) if and only if $U \subseteq Vint(\mathcal{A})$, whenever U is a vague semi closed set and $U \subseteq \mathcal{A}$.

Proof: Necessity: Suppose \mathcal{A} is $V\hat{G}OS$ in (X, τ) . Let U be a vague semi closed set in (X, τ) such that $U \subseteq \mathcal{A}$. Then U^{C} is a VSOS in X such that $\mathcal{A}^{C} \subseteq U^{C}$, By hypothesis, \mathcal{A}^{C} is a $V\hat{G}CS$ in (X, τ) .

We have $Vcl(\mathcal{A}^{C}) \subseteq U^{C}$, hence $U \subseteq Vint(\mathcal{A})$.

Sufficiency: Let \mathcal{A} be a vague set of X and let $U \subseteq Vint(\mathcal{A})$, whenever U is a vague semi closed set and $U \subseteq \mathcal{A}$. Then $\mathcal{A}^C \subseteq U^C$ and U^C is a vague semi open set. By hypothesis, $Vcl(\mathcal{A}^C) \subseteq U^C \Rightarrow \mathcal{A}^C$ is a $V\hat{G}CS$ in (X, τ) . Hence \mathcal{A} is a $V\hat{G}OS(X)$.

Theorem 3.13: Let (X, τ) be a VTS, then for every $\mathcal{A} \in V\hat{G}OS$ and for every $V\hat{G}OS$ in (X, τ) $\mathcal{B} \in VS(X)$, $Vint(\mathcal{A}) \subseteq \mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{B} \in V\hat{G}OS$ in (X, τ) .

Proof: Suppose \mathcal{A} is a $V\hat{G}OS$ in (X, τ) and $Vint(\mathcal{A}) \subseteq \mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{A}^C \subseteq \mathcal{B}^C \subseteq (Vint(\mathcal{A}))^C$.

Let $\mathcal{B}^C \subseteq U$ and U be VSOS, Since $\mathcal{A}^C \subseteq \mathcal{B}^C \subseteq U$, Hence $\mathcal{A}^C \subseteq U$. But \mathcal{A}^C is a $V\hat{G}CS(X) \Rightarrow Vcl(\mathcal{A}^C) \subseteq U$. Also $\mathcal{B}^C \subseteq (Vint(\mathcal{A}))^C = Vcl(\mathcal{A}^C)$. $\therefore Vcl(\mathcal{B}^C) \subseteq Vcl(Vcl(\mathcal{A}^C) \subseteq U$.

Hence \mathcal{B}^{C} is a $V\hat{G}FCS \Rightarrow \mathcal{B}$ is a $V\hat{G}FOS$ in (X, τ) . Hence $\mathcal{B} \in V\hat{G}FOS$ (X).

4. Properties of $T_V \widehat{g}_{\frac{1}{2}}$ spaces

We introduce the following definition:

Definition 4.1: A space (X, τ) is called a $T_V \widehat{g}_{\frac{1}{2}}$ space if every $V \widehat{g}$ - closed set in it is vague closed.

Example 4.2: "X = {a, b}, τ = {0, G, 1} is a VT on X, G = {< x, [0.5,0.5], [0.5,0.5] >} then the vague set $\mathcal{A} = \{< x, [0.5,0.5], [0.5,0.5] >\}$ ". Thus (X, τ) is a T_V $\widehat{g}_{\frac{1}{2}}$ space.

Example 4.3: " $X = \{a, b\}, \tau = \{0, G, 1\}$ is a VT on X, $G = \{< x, [0.1, 0.4], [0.2, 0.3] >\}$ then the vague set $\mathcal{A} = \{< x, [0.2, 0.8], [0.3, 0.6] >\}$ ". Here (X, τ) is not a T_V $\hat{g}_{\underline{1}}$ space.

Definition 4.4: A space (X, τ) is called a $T_V \widehat{g}_{\frac{1}{2}}^*$ space if every Vg- closed set in it is $V \widehat{g}$ – closed.

Example 4.5: "X = {a, b}, τ = {0, G, 1} is a VT on X, G = {< x, [0.3,0.6], [0.6,0.8] >} then the vague set \mathcal{A} = {< x, [0.2,0.4], [0.3,0.6] >}". Thus (X, τ) is a T_V $\widehat{g}_{\frac{1}{2}}$ *space.

Definition 4.6: A space (X, τ) is called a $T_{vs} \hat{g}_g$ space if every Vsg - closed set in it is $V\hat{g}$ - closed.

Example 4.7: " $X = \{a, b\}, \tau = \{0, G, 1\}$ is a VT on X, G = $\{< x, [0.3, 0.5], [0.4, 0.6] >\}$ then the vague set $\mathcal{A} = \{< x, [0.5, 0.8], [0.4, 0.7] >\}$ ". Thus (X, τ) is a $T_{v,s} \hat{g}_{g}$ space.

Theorem 4.8: Every $T_{V_{\frac{1}{2}}}$ space is a $T_V \widehat{g}_{\frac{1}{2}}$ space but not conversely.

Proof: Follows from the result "Every vague \hat{g} closed set is vague g closed but not conversely".

The converses of the above theorem need not be true as seen from the following example.

Example 4.9: "X = {a, b}, $\tau = \{0, G, 1\}$ is a VT on X, G = {< x, [0.5,0.5], [0.5,0.5] >} as same in the example 4.2 then the vague set B = {< x, [0.2,0.8], [0.3,0.6] >} is not vague closed". Hence (X, τ) is not a $T_{V_{\frac{1}{2}}}$ space.

Theorem 4.10: Every $T_{V_{1}^{\frac{1}{2}}}$ space is a $T_{V} \hat{g}_{\frac{1}{2}}$ space but not conversely.

Proof: Follows from the result "Every vague closed set is vague \hat{g} closed but not conversely".

The converses of the above theorem need not be true as seen from the following example.

Example 4.11: "X = {a, b}, $\tau = \{0, G, 1\}$ is a VT on X, G = {< x, [0.5,0.5], [0.5,0.5] >} as same in the example 4.2 then the vague set $\mathcal{A} = \{< x, [0.5,0.5], [0.5,0.5] >\}$ is V \hat{g} closed". Thus (X, τ) is a T_V $\hat{g}_{\frac{1}{2}}^*$ space, but the vague set

 $\mathcal{B} = \{ < x, [0.2, 0.8], [0.3, 0.6] > \}$ is not vague closed". Hence (X, τ) is not a $T_{V\frac{1}{2}}$ space.

Theorem 4.12: Let (X, τ) be a VTS and (X, τ) is $T_V \widehat{g}_{\frac{1}{2}}$ space. Then the following statements hold.

(i) Any union of $V \widehat{g} CS$ is $V \widehat{g} CS$.

(ii) Any intersection of $V \ \hat{g} \ OS$ is $V \ \hat{g} \ OS$.

Proof: (i) Let $\{U_i\}_{i \in J}$ be a collection of $V \widehat{g} CS$ in a $T_V \widehat{g}_{\frac{1}{2}}$ space (X, τ) . Therefore every $V \widehat{g} CS$ is VCS. But the union

of VCS is VCS. Hence the union of $V \widehat{g} CS$ is $V \widehat{g} CS$ in X.

(ii) It can be proved by taking the complement in (i).

Theorem 4.13: A VTS (X, τ) is a T_V $\hat{g}_{\frac{1}{2}}$ space if and only if $V \hat{g} O(X) = VO(X)$.

Proof: Necessity: Assume \mathcal{A} be $V \hat{g}$ OS in X. Then \mathcal{A}^{C} is $V \hat{g}$ CS in X. By hypothesis, \mathcal{A}^{C} is VCS in X. Therefore \mathcal{A} is VOS in X. Hence $V \hat{g}$ O(X) = VO(X).

Sufficiency: Suppose \mathcal{A} is $V \hat{g} CS$ in X. Then \mathcal{A}^C is $V \hat{g} OS$ in X. Therefore \mathcal{A} is VCS in X. Hence (X, τ) is $T_V \hat{g}_{\frac{1}{2}}$ space.

7. References

- [1]. Atanassov KT. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986;International Journal of Applied Research
- [2]. Biswas R, Vague groups. Internat J Comput. Cognition. 2006.
- [3]. Bustince H, Burillo P. Vague sets are intuitionistic fuzzy sets, Fuzzy sets and systems. 1996.
- [4]. Chang CL. Fuzzy topological spaces. J Math Anal Appl. 1968.
- [5]. Gau WL, Buehrer DJ, Vague sets, IEEE Trans. Systems Man and Cybernet. 1993.
- [6]. Levine N. Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo. 1970.
- [7]. Maki H, Balachandran K, Devi R. Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem.Fac. Sci. Kochi Univ. Ser. A Math. 1994.Maki. H, Umehara. J and Noiri. T, Every topological space is pre – T 1/2, Mem. Fac. Sci. Kochi. Univ. Ser. A. Mah. 1966.
- [8]. Mariapresenti & I. Arockiarani, On Vague Generalised alpha closed sets in Topological spaces, IJMA, Vol 7, No 8 (2016).
- [10]. Njastad O. On some classes of nearly open sets. Pacific J Math. 1965.
- [11]. Sundaram. P and Sheik John. M, "On w-closed sets in topology", Acta Ciencia Indica 4 (2000), 389-392.
- [12]. Thakur & Jyoti Pandey Bajpai, "Intutionistic fuzzy W-closed sets and W-Continuity", International Journal of Contemporary Advanced Mathematics (IJCM), 1(1).
- [13]. Veera Kumar M.K.R.S., "On g-closed sets in topological spaces", Bulletin Allahabad Math. Soc., 18(2003), 99-112.
- [14]. Zadeh LA, Fuzzy Sets. Information and Control. 1965.