INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
An International Dpen Access, Peer-reviewed, Refereed Journal

VAGUE \hat{g} OPEN SETS \& ITS APPLICATIONS IN VAGUE TOPOLOGICAL SPACES

MARY TENCY E.L ${ }^{1}$, Dr. PAULINE MARY HELEN ${ }^{2}$
${ }^{1}$ RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS, NIRMALA COLLEGE FOR WOMEN, COIMBATORE - 18
${ }^{2}$ ASSOCIATE PROFESSOR, DEPARTMENT OF MATHEMATICS, NIRMALA COLLEGE FOR WOMEN, COIMBATORE - 18

Abstract

A new class of vague $\widehat{\mathrm{g}}$ - open sets in vague topological spaces is introduced and also studied some of its basic properties. Further we obtained $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}, \mathrm{~T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}{ }^{*}, T_{v S} \widehat{\mathrm{~g}}_{\mathrm{g}}$ spaces and also discussed some of its characterizations.

\section*{KEYWORDS}

Vague \hat{g} open sets, $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}$ space, $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}{ }^{*}$ space, $T_{v S} \widehat{\mathrm{~g}}_{\mathrm{g}}$ space.

\section*{1. INTRODUCTION}

In 1965 the fuzzy sets was introduced by Zadeh ${ }^{[14]}$. The theory of fuzzy topology was introduced in 1967 by C.L. Chang ${ }^{[4]]}$. The concept of vague sets was first initiated by Gau and Buehrer ${ }^{[5]}$. Norman Levine ${ }^{[6]}$ initiated generalized closed (briefly g-closed) sets in 1970. M.K Veera Kumar ${ }^{[13]}$ introduced \hat{g}-Closed sets in topological spaces in 2000.

Here we introduced the concepts of vague $\widehat{\mathrm{g}}$ - open sets also studied the applications of the new class and its basic properties.

2. PRELIMINARIES

Definition 2.1: [2] A vague set \mathcal{A} in the universe of discourse X is characterized by two membership functions given by:

1. A true membership function $\mathrm{T}_{\mathcal{A}}: \mathrm{X} \rightarrow[0,1]$ and
2. A false membership function $\mathrm{F}_{\mathcal{A}}: \mathrm{X} \rightarrow[0,1]$,
where $\mathrm{T}_{\mathcal{A}}(\mathrm{x})$ is lower bound on the grade of membership of x derived from the "evidence for x ", $\mathrm{F}_{\mathcal{A}}(\mathrm{x})$ is a lower bound on the negation of x derived from the "evidence against x " and $\mathrm{T}_{\mathcal{A}}(\mathrm{x})+\mathrm{F}_{\mathcal{A}}(\mathrm{x}) \leq 1$. Thus the grade of membership of x in the vague set \mathcal{A} is bounded by a subinterval $\left[\mathrm{T}_{\mathcal{A}}(\mathrm{x}), 1-\mathrm{F}_{\mathcal{A}}(\mathrm{x})\right]$ of $[0,1]$.
Definition 2.2: [2] Let \mathcal{A} ad \mathcal{B} be two vague sets of the form $\mathcal{A}=\left\{\left\langle\mathrm{x}\right.\right.$, [$\left.\left.\left.\mathrm{T}_{\mathcal{A}}(\mathrm{x}), 1-\mathrm{F}_{\mathcal{A}}(\mathrm{x})\right]\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$ and $\mathcal{B}=\left\{\left\langle\mathrm{x},\left[\mathrm{T}_{\mathrm{B}}(\mathrm{x}), 1-\mathrm{F}_{\mathcal{B}}(\mathrm{x})\right]\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$ Then
a) $\mathcal{A} \subseteq \mathcal{B}$ if and only if $\mathcal{A}(\mathrm{x}) \leq \mathrm{T}_{\mathcal{B}}(\mathrm{x})$ and $1-\mathrm{F}_{\mathcal{A}}(\mathrm{x}) \leq 1-\mathrm{F}_{\mathcal{B}}(\mathrm{x})$ forall $\mathrm{x} \in \mathrm{X}$
b) $\mathcal{A}=\mathcal{B}$ if and only if $\mathcal{A} \subseteq \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{A}$
c) $\mathcal{A}^{\mathrm{C}}=\left\{\left\langle\mathrm{x}, \mathrm{F}_{\mathcal{A}}(\mathrm{x}), 1-\mathrm{T}_{\mathcal{A}}(\mathrm{x}) / \mathrm{x} \in \mathrm{X}\right\rangle\right\}$
d) $\mathcal{A} \cap \mathcal{B}=\left\{\left\langle\mathrm{x}, \min \left(\mathrm{T}_{\mathcal{A}}(\mathrm{x}), \mathrm{T}_{\mathcal{B}}(\mathrm{x})\right), \min \left(1-\mathrm{F}_{\mathcal{A}}(\mathrm{x}), 1-\mathrm{F}_{\mathcal{B}}(\mathrm{x})\right)\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$
e) $\mathcal{A} \cup \mathcal{B}=\left\{\left\langle\mathrm{x}, \max \left(\mathrm{T}_{\mathcal{A}}(\mathrm{x}), \mathrm{T}_{\mathcal{B}}(\mathrm{x})\right), \max \left(1-\mathrm{F}_{\mathcal{A}}(\mathrm{x}), 1-\mathcal{B}(\mathrm{x})\right)\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$

VAGUE TOPOLOGICAL SPACE

Definition 2.3:[8] A vague topology (VT in short) on X is a family τ of vague sets (VS in short) in X satisfying the following axioms.
a) $0,1 \in \tau$
b) $G_{1} \cap G_{2} \in \tau$, for any $G_{1}, G_{2} \in \tau$
c) $U \mathrm{G}_{\mathrm{i}} \in \tau$ for any family $\left\{\mathrm{G}_{\mathrm{i}} / \mathrm{i} \in \mathrm{J}\right\} \subseteq \tau$

In this case the pair (X, τ) is called a vague topological space (VTS in short) and any VS in ' τ ' is known as a vague open set (VOS in short) in X.

Definition 2.4:[8] Let (X, τ) be a VTS and $\mathcal{A}=\left\langle\mathrm{x}, \mathrm{T}_{\mathcal{A}}, 1-\mathrm{F}_{\mathcal{A}}\right\rangle$ be a VS in X . Then the vague interior and a vague closure are defined by
$\mathrm{V} \operatorname{int}(\mathcal{A})=U\{\mathrm{G} / \mathrm{G}$ is an VOS in X and $\mathrm{G} \subseteq \mathcal{A}\}, \mathrm{Vcl}(\mathcal{A})=\bigcap\{\mathrm{K} / \mathrm{K}$ is an VCS in X and $\mathcal{A} \subseteq \mathrm{K}\}$
Note: $\operatorname{Vcl}\left(\mathcal{A}^{c}\right)=(V \operatorname{int}(\mathcal{A}))^{C}$ and $V \operatorname{int}\left(\mathcal{A}^{c}\right)=(V \operatorname{cl}(\mathcal{A}))^{C}$.

Definition 2.5:[8] A Vague set \mathcal{A} of (X, τ) is said to be a (VSCS if $\operatorname{Vint}(\operatorname{Vcl}(\mathcal{A})) \subseteq \mathcal{A})$, $(\operatorname{VSOS}$ if $\mathcal{A} \subseteq$ $\operatorname{Vcl}(\operatorname{Vint}(\mathcal{A}))),(\operatorname{VPCS}$ if $\operatorname{Vcl}(\operatorname{Vint}(\mathcal{A})) \subseteq \mathcal{A}),(\operatorname{VPOS}$ if $\mathcal{A} \subseteq \operatorname{Vint}(\operatorname{Vcl}(\mathcal{A}))),(\operatorname{VaCS}$ if $\operatorname{Vcl}(\operatorname{Vint}(\operatorname{Vcl}(\mathcal{A}))) \subseteq$ $\mathcal{A}),(\operatorname{VaOS}$ if $\mathcal{A} \subseteq \operatorname{Vint}(\operatorname{Vcl}(\operatorname{Vint}(\mathcal{A})))),(\operatorname{VROS}$ if $\mathcal{A}=\operatorname{Vint}(\operatorname{Vcl}(A))),(\operatorname{VRCS}$ if $\mathcal{A}=\operatorname{Vcl}(\operatorname{Vint}(\mathcal{A})))$,

Definition 2.6:[9] A vague set \mathcal{A} of (X, τ) is said to be a vague $\hat{\mathbf{g}}$-closed sets (V $\widehat{\mathrm{G} C S}$ in short) if $\operatorname{Vcl}(\mathcal{A}) \subseteq U$ whenever $\mathcal{A} \subseteq U$ and U is vague semi open set in X.

4. VAGUE \widehat{g} - OPEN SETS

We introduced the notion of vague \hat{g} open sets and studied some of their properties.
Definition 3.1: A vague set \mathcal{A} of (X, τ) is said to be a vague $\hat{\mathrm{g}}$ - open sets (V $\widehat{\mathrm{G} O S}$ in short) if $\operatorname{Vint}(\mathcal{A}) \supseteq \mathrm{U}$ whenever $\mathcal{A} \supseteq \mathrm{U}$ and U is vague semi closed set in X .

The family of all $\mathrm{V} \hat{\mathrm{g}} \mathrm{OSs}$ of an $\operatorname{VTS}(\mathrm{X}, \tau)$ is denoted by $\mathrm{V} \hat{\mathrm{g}} \mathrm{O}(\mathrm{X})$.
Note that the complement of \mathcal{A} (i.e., \mathcal{A}^{C}) is $\mathrm{V} \hat{\mathrm{g}} \mathrm{CS}, \mathcal{A}$ in an $\mathrm{VTS}(\mathrm{X}, \tau)$ is a $\mathrm{V} \hat{\mathrm{g}} \mathrm{OS}$ in X .

Example 3.2: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ be a VT on $\mathrm{X}, \mathrm{G}=\{<x,[0.2,0.5],[0.1,0.4]>\}$, then the vague set $\mathcal{A}=$ $\{<x,[0.2,0.7],[0.3,0.6]>\}$ is a $V \hat{g}$ OS.

Theorem 3.3:

i. Every VOS is a V $\widehat{G} O S$.
ii. Every V $\widehat{G} O S$ is a VSGOS.
iii. Every V $\widehat{G} O S$ is a VGOS.
iv. Every V $\widehat{G} O S$ is a VRGOS.
v. Every V $\widehat{G} O S$ is a VGPROS.
vi. Every V $\widehat{G} O S$ is a $\mathrm{V} \alpha$ GOS.

Proof: Straight forward.

The converse of the above statements need not be true, which can be verified by the following examples.
Example 3.4: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ be a VT on $\mathrm{X}, \mathrm{G}=\{<x,[0.1,0.4],[0.2,0.3]>\}$, then the vague set $\mathcal{A}=$ $\{\langle x,[0.2,0.8],[0.3,0.6]\rangle\}$ is a $V \hat{g}$ OS but not a VOS.
Example 3.5: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ be a VT on $\mathrm{X}, \mathrm{G}=\{<x,[0.6,0.9],[0.7,0.8]>\}$ then the vague set $\mathcal{A}=$ $\{<x,[0.9,0.9],[0.8,0.8]>\}$ is a VSGOS but not VĝOS.
Example 3.6: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\left\{0, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4} 1\right\}$ be a VT on $\left.\mathrm{X}, \mathrm{G}_{1}=\{<x,[0.2,0.5],[0.5,0.5]\rangle\right\}, \mathrm{G}_{2}=$ $\{\langle x,[0.5,0.9],[0.3,0.4]\rangle\}, \mathrm{G}_{3}=\{\langle x,[0.5,0.9],[0.4,0.5]\rangle\}, \mathrm{G}_{4}=\{\langle x,[0.2,0.5],[0.3,0.4]\rangle\}$ then the vague set $\mathcal{A}=\{<x,[0.4,0.5],[0.5,0.6]\rangle\}$ is a VGOS but not V $\hat{g} O S$.

Example 3.7: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ be a VT on $\mathrm{X}, \mathrm{G}=\{<x,[0.2,0.7],[0.5,0.8]>\}$ then the vague set $\mathcal{A}=$ $\{<x,[0.6,0.8],[0.6,0.9]\rangle\}$ is a VRGOS but not VĝOS.
Example 3.8: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ be a VT on $\mathrm{X}, \mathrm{G}=\{<x,[0.5,0.7],[0.2,0.7]>\}$ then the vague set $\mathcal{A}=$ $\{<x,[0.4,0.5],[0.5,0.8]\rangle\}$ is a VGPROS but not VĝOS.
Example 3.9: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ is a VT on $\mathrm{X}, \mathrm{G}=\{<x,[0.5,0.9],[0.4,0.8]>\}$ then the vague set $\mathcal{A}=$ $\{<x,[0.2,0.5],[0.3,0.6]>\}$ is a VaGOS but not VĝOS.

Theorem 3.10: The union and the intersection of any two $V \hat{g} O S$ in (X, τ) may be a $V \hat{g} O S$ in (X, τ). This can be seen from the below example.
Example 3.11: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\left\{0, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4} 1\right\}$ be a VT on $\left.\mathrm{X}, \mathrm{G}_{1}=\{<x,[0.1,0.4],[0.2,0.3]\rangle\right\}, \mathrm{G}_{2}=$ $\{<x,[0.2,0.5],[0.1,0.4]>\}, \mathrm{G}_{3}=\left\{\langle x,[0.2,0.5],[0.2,0.4]>\}, \mathrm{G}_{4}=\{\langle x,[0.1,0.4],[0.1,0.3]\rangle\}\right.$ then the vague set $\mathcal{A} \cup \mathcal{B}=\{\langle x,[0.2,0.8],[0.3,0.6]\rangle\} \& \mathcal{A} \cap \mathcal{B}=\{\langle x,[0.2,0.7],[0.3,0.6]\rangle\}$
is a $V \hat{g} O S$, but depending upon the vague points it may vary.

Theorem 3.12: A vague set \mathcal{A} of a $\operatorname{VTS}(X, \tau)$ is a $V \hat{G} O S$ in (X, τ) if and only if $U \subseteq \operatorname{Vint}(\mathcal{A})$, whenever U is a vague semi closed set and $U \subseteq \mathcal{A}$.

Proof: Necessity: Suppose \mathcal{A} is $V \widehat{G} O S$ in (X, τ). Let U be a vague semi closed set in (X, τ) such that $U \subseteq \mathcal{A}$. Then U^{C} is a VSOS in X such that $\mathcal{A}^{C} \subseteq U^{C}$, By hypothesis, \mathcal{A}^{C} is a $V \widehat{G} C S$ in (X, τ).

We have $\operatorname{Vcl}\left(\mathcal{A}^{C}\right) \subseteq U^{C}$, hence $U \subseteq \operatorname{Vint}(\mathcal{A})$.
Sufficiency: Let \mathcal{A} be a vague set of X and let $\mathrm{U} \subseteq \operatorname{Vint}(\mathcal{A})$, whenever U is a vague semi closed set and $U \subseteq \mathcal{A}$. Then $\mathcal{A}^{C} \subseteq U^{C}$ and U^{C} is a vague semi open set. By hypothesis, $\operatorname{Vcl}\left(\mathcal{A}^{C}\right) \subseteq U^{C} \Rightarrow \mathcal{A}^{C}$ is a $V \hat{G} C S$ in (X, τ). Hence \mathcal{A} is a $V \widehat{G} O S(X)$.

Theorem 3.13: Let (X, τ) be a VTS, then for every $\mathcal{A} \in V \hat{G} O S$ and for every $V \hat{G} O S$ in $(X, \tau) \mathcal{B} \in$ $V S(X), \operatorname{Vint}(\mathcal{A}) \subseteq \mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{B} \in V \hat{G} O S$ in (X, τ).

Proof: Suppose \mathcal{A} is a $V \hat{G} O S$ in (X, τ) and $\operatorname{Vint}(\mathcal{A}) \subseteq \mathcal{B} \subseteq \mathcal{A} \Rightarrow \mathcal{A}^{C} \subseteq \mathcal{B}^{C} \subseteq(\operatorname{Vint}(\mathcal{A}))^{C}$.

Let $\mathcal{B}^{C} \subseteq U$ and U be VSOS, Since $\mathcal{A}^{C} \subseteq \mathcal{B}^{C} \subseteq U$, Hence $\mathcal{A}^{C} \subseteq U$. But \mathcal{A}^{C} is a $V \hat{G} C S(\mathrm{X}) \Rightarrow V c l\left(\mathcal{A}^{C}\right) \subseteq U$. Also $\mathcal{B}^{C} \subseteq(\operatorname{Vint}(\mathcal{A}))^{C}=\operatorname{Vcl}\left(\mathcal{A}^{C}\right) . \quad \therefore \operatorname{Vcl}\left(\mathcal{B}^{C}\right) \subseteq \operatorname{Vcl}\left(\operatorname{Vcl}\left(\mathcal{A}^{C}\right) \subseteq U\right.$.
Hence \mathcal{B}^{C} is a $V \widehat{G} F C S \Rightarrow \mathcal{B}$ is a $V \widehat{G} F O S$ in (X, τ). Hence $\mathcal{B} \in V \widehat{G} F O S(X)$.

4. Properties of $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}$ spaces

We introduce the following definition:
Definition 4.1: A space (X, τ) is called a $T_{V} \widehat{\mathrm{~g}}_{\frac{1}{2}}$ space if every $\mathrm{V} \widehat{g}$ - closed set in it is vague closed.
Example 4.2: " $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ is a VT on $\mathrm{X}, \mathrm{G}=\{\langle x,[0.5,0.5],[0.5,0.5]\rangle\}$ then the vague set $\mathcal{A}=$ $\{<x,[0.5,0.5],[0.5,0.5]>\} "$. Thus (X, τ) is a $\mathrm{T}_{\mathrm{v}} \widehat{\mathrm{g}}_{\frac{1}{2}}$ space.
Example 4.3: " $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ is a VT on $\mathrm{X}, \mathrm{G}=\{\langle x,[0.1,0.4],[0.2,0.3]\rangle\}$ then the vague set $\mathcal{A}=$ $\{<x,[0.2,0.8],[0.3,0.6]\rangle\}$. Here (X, τ) is not a $\mathrm{T}_{\mathrm{v}} \widehat{\mathrm{g}}_{\frac{1}{2}}$ space.

Definition 4.4: A space (X, τ) is called a $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}{ }^{*}$ space if every Vg - closed set in it is $\mathrm{V} \widehat{\mathrm{g}}$ - closed.
Example 4.5: " $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ is a VT on $\mathrm{X}, \mathrm{G}=\{\langle x,[0.3,0.6],[0.6,0.8]\rangle\}$ then the vague set $\mathcal{A}=$ $\{<x,[0.2,0.4],[0.3,0.6]>\}$ ". Thus (X, τ) is a $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}{ }^{*}$ space.
Definition 4.6: A space (X, τ) is called a $T_{v} \widehat{\mathrm{~g}}_{\mathrm{g}}$ space if every $\mathrm{V} s \mathrm{~g}$ - closed set in it is $\mathrm{V} \widehat{\mathrm{g}}$ - closed.
Example 4.7: " $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ is a VT on $\mathrm{X}, \mathrm{G}=\{\langle x,[0.3,0.5],[0.4,0.6]\rangle\}$ then the vague set $\mathcal{A}=$ $\{<x,[0.5,0.8],[0.4,0.7]\rangle\}$. Thus (X, τ) is a $T_{v s} \widehat{\mathrm{~g}}_{\mathrm{g}}$ space.

Theorem 4.8: Every $T_{V^{\frac{1}{2}}}$ space is a $T_{V} \widehat{\mathrm{~g}}_{\frac{1}{2}}$ space but not conversely.
Proof: Follows from the result "Every vague $\widehat{\mathrm{g}}$ closed set is vague g closed but not conversely".
The converses of the above theorem need not be true as seen from the following example.
Example 4.9: " $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ is a VT on $\mathrm{X}, \mathrm{G}=\{<x,[0.5,0.5],[0.5,0.5]>\}$ as same in the example 4.2 then the vague set $\mathrm{B}=\{\langle x,[0.2,0.8],[0.3,0.6]\rangle\}$ is not vague closed". Hence (X, τ) is not a $T_{V \frac{1}{2}}$ space.
Theorem 4.10: Every $T_{V \frac{1}{2}}$ space is a $T_{V} \widehat{\mathrm{~g}}_{\frac{1}{2}}{ }^{*}$ space but not conversely.
Proof: Follows from the result "Every vague closed set is vague $\widehat{\mathrm{g}}$ closed but not conversely".
The converses of the above theorem need not be true as seen from the following example.
Example 4.11: " $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}, \tau=\{0, \mathrm{G}, 1\}$ is a VT on $\mathrm{X}, \mathrm{G}=\{\langle x,[0.5,0.5],[0.5,0.5]\rangle\}$ as same in the example 4.2 then the vague set $\mathcal{A}=\left\{\langle x,[0.5,0.5],[0.5,0.5]>\}\right.$ is $\mathrm{V} \widehat{\mathrm{g}}$ closed". Thus (X, τ) is a $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}{ }^{*}$ space, but the vague set $\mathcal{B}=\{\langle x,[0.2,0.8],[0.3,0.6]\rangle\}$ is not vague closed". Hence (X, τ) is not a $T_{V \frac{1}{2}}$ space.

Theorem 4.12: Let (X, τ) be a VTS and (X, τ) is $\mathrm{T}_{\mathrm{v}} \widehat{\mathrm{g}}_{\frac{1}{2}}$ space. Then the following statements hold.
(i) Any union of $V \widehat{\mathrm{~g}} \mathrm{CS}$ is $V \widehat{\mathrm{~g}} \mathrm{CS}$.
(ii) Any intersection of $V \widehat{\mathrm{~g}} \mathrm{OS}$ is $V \hat{\mathrm{~g}} \mathrm{OS}$.

Proof: (i) Let $\left\{U_{i}\right\}_{i \in J}$ be a collection of $V \widehat{\mathrm{~g} C S}$ in a $\mathrm{T}_{\mathrm{v}} \widehat{\mathrm{g}}_{\frac{1}{2}}$ space (X, τ). Therefore every $V \widehat{\mathrm{~g}} \mathrm{CS}$ is VCS. But the union of VCS is VCS. Hence the union of $V \widehat{\mathrm{~g}} \mathrm{CS}$ is $V \widehat{\mathrm{~g}} \mathrm{CS}$ in X .
(ii) It can be proved by taking the complement in (i).

Theorem 4.13: $\mathrm{A} \operatorname{VTS}(\mathrm{X}, \tau)$ is a $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}$ space if and only if $V \widehat{\mathrm{~g}} \mathrm{O}(\mathrm{X})=\mathrm{VO}(\mathrm{X})$.
Proof: Necessity: Assume \mathcal{A} be $V \hat{g}$ OS in X . Then \mathcal{A}^{C} is $V \widehat{\mathrm{~g}} \mathrm{CS}$ in X . By hypothesis, \mathcal{A}^{C} is VCS in X. Therefore \mathcal{A} is VOS in X . Hence $V \widehat{\mathrm{~g}} \mathrm{O}(\mathrm{X})=\mathrm{VO}(\mathrm{X})$.
Sufficiency: Suppose \mathcal{A} is $V \hat{\mathrm{~g}} \mathrm{CS}$ in X . Then \mathcal{A}^{C} is $V \widehat{\mathrm{~g}} \mathrm{OS}$ in X . Therefore \mathcal{A} is VCS in X . Hence (X, τ) is $\mathrm{T}_{\mathrm{V}} \widehat{\mathrm{g}}_{\frac{1}{2}}$ space.

7. References

[1]. Atanassov KT. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986;International Journal of Applied Research
[2]. Biswas R, Vague groups. Internat J Comput. Cognition. 2006.
[3]. Bustince H, Burillo P. Vague sets are intuitionistic fuzzy sets, Fuzzy sets and systems. 1996.
[4]. Chang CL. Fuzzy topological spaces. J Math Anal Appl. 1968.
[5]. Gau WL, Buehrer DJ, Vague sets, IEEE Trans. Systems Man and Cybernet. 1993.
[6]. Levine N. Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo. 1970.
[7]. Maki H, Balachandran K, Devi R. Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem.Fac. Sci. Kochi Univ. Ser. A Math. 1994.Maki. H, Umehara. J and Noiri. T, Every topological space is pre - T 1/2, Mem. Fac. Sci. Kochi. Univ. Ser. A. Mah. 1966.
[8]. Mariapresenti \& I. Arockiarani, On Vague Generalised alpha closed sets in Topological spaces, IJMA, Vol 7, No 8 (2016).
[9]. Mary Tency E L \& Pauline Mary Helen. M, "On Vague \hat{g} Closed Sets in Vague topological Spaces", Int. J. Math. And Appl., 7(1)(2019), 171-176.
[10]. Njastad O. On some classes of nearly open sets. Pacific J Math. 1965.
[11]. Sundaram. P and Sheik John. M, "On w-closed sets in topology", Acta Ciencia Indica 4 (2000), 389392.
[12]. Thakur \& Jyoti Pandey Bajpai, "Intutionistic fuzzy W-closed sets and W-Continuity", International Journal of Contemporary Advanced Mathematics (IJCM), 1(1).
[13]. Veera Kumar M.K.R.S., "On g-closed sets in topological spaces", Bulletin Allahabad Math. Soc., 18(2003), 99-112.
[14]. Zadeh LA, Fuzzy Sets. Information and Control. 1965.

